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The temperature dependence of the density of both pure and saline water, even to 
very high salinity and pressure levels, decreases at decreasing temperature toward 
an extremum. The nature of this variation precludes approximating the buoyancy- 
force density difference linearly with a temperature difference. This peculiar density 
variation of water has very significant effects, even at  environmental temperature 
levels. A new equation has appeared which relates density to temperature, salinity 
and pressure with very high accuracy. Its form is especially suited to the analysis 
of convective motions. We consider here vertical boundary-layer flows. Analysis of 
flows arising from thermal buoyancy and from combined buoyancy effects shows 
the simplicity of the formulation. Relatively few new parameters arise. Extensive 
calculations for thermally buoyant flows show the large magnitude of the effects of 
the complicated density variation on tmnsport . Buoyancy-force reversals and con- 
vective inversions are predicted. The latter are in close agreement with past experi- 
ments. A new Grashof number arises which is an accurate indication of the actual 
local flow vigour. The effects of specific temperature conditions are given in detail. 
The appreciable effect of the Prandtl number is calculated. Transport parameters 
are given for salinities and pressures up to 40p.p.t. and 1000 bars, respectively. 

1. Introduction 
The density extremum in pure water at  atmospheric pressure, at  about 4OC, is 

well known. An extremum also occurs in saline water, up to a salinity level s of about 
26 p.p.t. (parts per thousand), and a t  elevated pressures up to about 300 bars abs. 
in pure water in local thermodynamic equilibrium. An extremum is also found well 
beyond these conditions in non-equilibrium circumstances. Figure 1 shows the vari- 
ation of density with temperature in the vicinity of the density extremum for several 
salinities and pressures. The temperature at  maximum density t,(s,p) is seen to 
decrease with increasing salinity and pressure, as does the equilibrium ice-melting 
temperature til(s, p ) .  

These ranges of temperature, salinity and pressure occur both in terrestrial waters 
and in many technological processes. In  buoyancy -induced flows driven by differing 
temperatures near the extremum temperature, maximum-density conditions might 
arise and influence the motion. In fact, given the dependence of density on tempera- 
ture, salinity and pressure and the dependence of the extremum temperature on 
both salinity and pressure, several density extrema may conceivably occur acrosa a 
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F I G U R E  1. Tho density-temperature depertdertce a t  various s and p as formulated by Gebhart & 
Mollendorf (1977) .  p(t ,s,p) is in kg/ni3, t in "C, s in p.p.t. and p in bars abs. Also shown is the 
equilibrium phase interface and the temperature of maximum density. The arrow associated 
with each curve indicates the vertical scale which applies. 

given flow region. That is, in a region of gradients of temperature, salinity and pressure, 
more than two trends in the density might arise. It is not always possible to ascertain 
the occurrence of extrema from the boundary conditions since interacting diffusive 
and convective processes determine the local density. 

A general analysis of a particular flow geometry seems, initially, to be very compli- 
cated, even if the Boussinesq approximation is applied to the extent of neglecting 
density variations in continuity considerations. The problem arises in the buoyancy 
force g(p, - p),  where g is gravity, p(t,  s, p) is the local density and pr is a local reference 
value, usually that which determines the local change in the hydrostatic pressure 
levelp,. The other part of the conventional approximation is the expression of this local 
density difference linearly in terms of the differences t - t ,  and s-s,, using the 
respect,ive volumetric coefficients of expansion as constant coefficients. This is not an 
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attractive or often even a reasonable formulation when a density extremum con- 
dition arises, since the thermal expansion coefficient may then be positive, zero and 
negative within such a flow. The results would be very awkward; see, for example, 
the ice-melting resuIts and observations of Bendell & Gebhart (1976). 

However, as we shall see, we may dispense with this second approximation and 
retain comparable simplicity. This may be done in greater generality than in past work. 
We may cover a wide range of the most important conditions in which density extrema 
may occur. This may also be done for saline water and at  pressure levels up t o  1000 bars. 

There are three kinds of buoyant convective motions: flows inside cavities; circu- 
lations, which may occur in horizontal and unstably stratified fluid layers; and external 
flows, which are caused in an extensive quiescent ambient medium by a localized 
temperature or salinity condition. We consider here only external flows in which 
density extrema may arise. 

Such circulations have been considered both experimentally and analytically for 
spherical, cylindrical and flat surfaces in cold pure water. Apparently Codegone (1939) 
was the first to demonstrate convective reversals (or inversions) around the density 
extremum. Most subsequent experimental studies are reviewed by Bendell & Gebhart 
( 1  976). Several additional ones are discussed here in conjunction with their relation 
to analyses. 

The first analysis of such motions known to us was done by Merk (1953). Using 
an integral method, he calculated the local heat transfer a t  low temperatures around 
a melting sphere. Convective inversion was predicted. 

Schechter & Isbin (I%%), using the buoyancy-force approximation developed by 
Merk, applied an integral method and an analog-solution technique to flow adjacent 
to a vertical surface in water at around 4 "C. The analysis led to a prediction, in terms 
of Chappius' density coefficients in the density expression used by Merk, of the actual 
flow direction. This work is interesting although it is not clear what unrealistic effects 
might arise from assuming conventional profiles. As we shall see, an integral analysis 
is especially suspect for these flows. 

Goren (1 966) considered a vertical surface at a temperature to in ambient water 
whose temperature t, was that of maximum density, i.e. t, = t,. The usual equations 
of motion were used with the buoyancy A p  taken as p, a(t - t,)2, where 

a = 8.0 x 10-6(OC)-2 

is a conventional value said to give sufficient accuracy for +_ 4 "C around t,. No ad- 
ditional parameters arise and an analog-computer solution was given for Pr = 11.4. 
Vanier & Tien ( 1  967) extended the study of Goren above its implied accuracy limit 
oft, = 8 "C by approximating the driving density difference by a sum of linear, square 
and cubic terms in t - t,, according to  the density data of Perry (1963). This is similar 
to the treatment by Merk. The penalty in the analysis is two to-dependent parameters 
in two new terms in the differential equations. The formulation is still limited to  
t ,  = t,n. Neglecting these terms, they repeated Goren's calculations and obtained 
values about 15% higher. Solutions were given for specific values in the range of 

The measurements by Oborin (1 967) on a sphere and horizontal cylinder in water 
agreed with Merk's prediction of convective inversion. The observations of Schenk 
& Schenkels (1968) for ice spheres in cold water were in fair agreement with the 

0 < to < 35°C. 
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experimental results of Dumord, Merk & Prins (1953) and with the analysis of Merk 
(1953). The minimum in the heat-transfer parameter was said to occur at t, = 5.3 "C, 
in better agreement with the prediction of Merk. Although the spread of the data seems 
too great to support such accuracy, these data are evidence of a reasonably well- 
defined convective inversion. 

Vanier & Tien (1968) discussed in detail the directional tendencies of flow across 
the boundary region formed adjacent to a vertical surface in ambient water a t  tem- 
peratures around its density extremum. The effects of the relation of to and t, to 
t,,L were outlined. The density formulation used by Merk was then used in an analysis. 
The equations were reduced to similarity form. However, additional parameters arose 
which depended on the three constants pi in the density formulation and also on to 
and t,. The sign of the buoyancy-force term must be changed according to a set of 
criteria. Numerical results for t, = 0 and 1 < to < 14°C were compared with the 
predictions of Schechter & Isbin. Considerable differences were found. Calculations 
were also made for other values oft,. However, the authors concluded that there are 
several temperature zones in which 'the physical model cannot accurately be applied'. 
Calculations were also compared with some of the data of Ede (1 951) and of Schechter 
& Isbin, and showed fair agreement. The density formulation chosen imposes un- 
fortunate limitations and complexity on the analysis. 

Govindarajulu (1970) used the full equations, again with A p  cc (At)z ,  for water 
at t, = t ,  to consider both vertical and horizontal porous surfaces. Similarity 
was formulated for a power-law downstream surface temperature variation to(x) 
(d  = to - t, = Nxn in our notation below). The required x dependence of the blowing 
velocity for similarity was given. No solutions were determined. 

Roy (1972) re-solved Goren's problem and also obtained results which were different 
by about 15%. Then a large Prandtl number approximation was made to solve 
the problem by a method of inner and outer layers, even though water is the only 
prominent liquid of moderately high Prandtl number having a density extremum. 
Soundalgekar (1973) used the A p  cc (At)2 buoyancy formulation, again for t ,  = 4 "C in 
an integral analysis and again with the conventional profiles also used by Schechter 
& Isbin, to calculate more simply the surface shear stress. Bendell & Gebhart (1976) 
have determined the melting rates of vertical ice slabs in ambient water at tem- 
peratures from about 2 to  -20°C. The results were converted to a heat-transfer 
parameter and are in very good agreement with calculations made by the present 
authors with the new formulation. 

The previous studies of transport in water around its density extremum have been 
made for pure water at la tm.  Experimental studies have been made for spheres, 
horizontal cylinders and vertical surfaces. Analytical work has used the buoyancy- 
force approximation of Merk or the other conventional one Apcc (At)2. Integral 
analyses have been performed around a sphere and also adjacent to a vertical surface. 
All relatively simple analyses using the full equations have been one sided, in the sense 
of taking t, = t,, the extremum temperature. No buoyancy-force inversion then occurs 
in the convection region. The studies using a cubic polynomial for the density vari- 
tion with temperature were faced with a number of additional problem particular 
parameters. This, as we shall see, is unnecessary. 

The present work retains all first-order effects in a formulation which treats con- 
vection around a density extremum, for both pure and saline water, over a wide range 
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of pressure levels. Similarity is achieved with a minimum of parameters. Also formu- 
lated is the full problem of the vertical boundary-layer regime with simuitaneous 
diffusion of momentum, thermal energy and salinity for t ,  and to on either side oft,,,. 
The accuracy of the buoyancy-force formulation will be that of the density relation 
p ( t ,  s , p )  used to calculate it. 

2. The formulation 

(4)) and with constant molecular diffusion properties p, k and D are 
The equations of steady laminar motion, with a Boussinesq approximation, in (1)- 

V . W  = 0, (1)  

p l (W.V)W = F - V p + p V ' w ,  (2) 

(3) 

(4) 

plCp(W. V )  t = kV2t + / ~ T ( w .  V ) p  +p@, 

(w. V )  s = DV2s, 

where F = gp is the body force per unit volume, p is the local static pressure and w 
is the local velocity of the centre of mass. The approximation used in (1)  is much more 
accurate for the conditions relevant to this study than in general. Note that the form 
of ( 1 )  leaves the specific value of p1  unspecified. 

The salt concentration s is assumed small compared with the density of the water. 
We note that s for sea water is around 35 p.p.t. The formulation neglects distributed 
energy and salinity sources, e.g. from chemical reactions. The Soret effect is not 
included as it is a relatively small effect in the presence of appreciable convective 
motion. The Dufour effect is even smaller. The terms in the energy equation (3) 
corresponding to viscous dissipation and the pressure field will later be ignored, since 
they are very small in such flows. In addition, they do not admit similarity in some 
of the circumstances of greatest practical importance, as we shall see later. 

The x direction is first taken positive in the direction opposed to gravity, i.e. 
g = -gi, where i is a unit vector in the x direction, for upward buoyancy. The local 
static pressure p is written as the sum of the local motion pressure p ,  and the hydro- 
static pressure p h  in the remote ambient medium, where dp,/dx = - gp, and p m  is the 
local ambient density (at x ) .  We now have 

F - V p  = - g p i + g p , i - V p ,  = g(p , - -p ) i -Vpm.  ( 5 )  

The first term in ( 5 )  is the buoyancy force and in general p ,  = p(t , ,s , ,p,) .  Now 
applying the boundary-layer approximations for two-dimensional plane flows largely 
in the x direction, we have 

a u p x  + a v p y  = Q, (6) 
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Following the notation of Gebhart (1971, 1973), we define a transformation in 
terms of a similarity variable ~ ( z ,  y) and stream functions ~ ( z ,  y) and f (y )  and also 
define the temperature and salinity functions : 

17 = y b ( 4 ,  I k Y )  = vc(x)f(.rl), (10) 

(11) 

(12) 

4 = ( t - t , ) / t , - t , ,  = (s--,)/(so-s,), (13) 

to - t ,  = d(z), so - s, = e(x) ,  

t ,  - t, = j(z), s, - s, = r ( z ) ,  

where t ,  and z, are reference values and v is also taken as constant, as was p, since 
changes in p are very small. The density correlation (20) indicates that the density 
change is even very much smaller than in ordinary liquids. For example, the change Ap 
from 0 to 5 "C is about 200 p.p.m. of pm.  The salinity variable used is that given in (13), 
instead of s/s,, for simplicity in subsequent analysis. The functions d and e concern the 
variables t and s at  y = 0, while j and r admit stratification of the quiescent ambient 
medium. The functions b and c depend on the local vigour and extent of the flow. 

The local vigour of a buoyancy-induced flow is indicated by the local Grashof 
number, which is conventionally defined as Gr, = g/3z3(to - t , ) /v2 for a purely thermally 
driven flow. This results from analysis with what is often called the second part of 
the Boussinesq approximation. The first part is that used in (1 ) .  The second amounts 
to assuming that density is a linear function of temperature. There are considerable 
differences and confusion in the literature concerning the proper attribution and 
names to be associated with these approximations. There is a widely used convention 
which calls them Boussinesq. However they were first introduced by Oberbeck (1879). 
They were also used by Lorenz (1881) in the pioneering boundary-region calculation 
of a buoyancy-induced flow, some twenty-one years before the specific enunciation 
of forced-flow boundary-layer theory. The discussion by Joseph (1971) suggests that 
these be called collectively the 0-B approximations. We have here retained the more 
conventional term. 

The above Grashof number is the 'unit Grashof number' gx3/v2 times a measure 
P(to - t , )  of the units of buoyancy. When additional buoyancy modes arise owing to 
species diffusion, additional units of buoyancy of similar form are added. See, for 
example, Gebhart & Pera (1971). 

Around an extremum one may not estimate the buoyancy force with a single linear 
term. Some true measure of the motive density difference ApG must be used as follows: 

We might take APG = p, - p ,  where p is some suitable average value associated with 
the convection region. Simple averaging of the two boundary temperatures to and t, 
yields Apa = $p/3(to - t ,),  using the conventional approximation. An analogous and 
more reasonable procedure here might be to calculate p as the average of p ( t , s , p )  
between both the bounding temperature and salinity conditione, assuming, as 
justified later, that the pressure effects are very commonly of smaller order. 
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However, this relatively simple measure was found not to be the proper one on two 
counts. First, with extrema, the boundary conditions are not always characteristic. 
Second, the Grashof number should be a measure of the strength of the flow and 
should generally indicate its direction. One may easily see, by locating different to and 
t ,  conditions on figure 1, that use of the average of these two conditions in Apa does 
not in general confer any of these properties on the Grashof number. Instead it was 
found very advantageous to define Apa as the actual calculated physical buoyancy 
force across the convection layer. This definition will be seen to arise naturally. 

Introducing the transformations (lo)-( 13) into (6)-(9), we have 

$ w  c g b2c2 v2 ,,2 - 
a b  bd bd bdc ,  d cp 

S" c, ce, I cr, I 

Sc b be be 

- + %f$' - KX f '$ - & f - PT - - f' + - - f - 0, 

-+-fS'-- f S-- f = 0, 

where the subscripts x indicate differentiation with respect to x. The last term in (15) 
is the buoyancy force. 

Both (16) and (17) contain terms for non-uniform surface conditions, those in d,  
and ex, and also terms for stratification of the ambient medium, those in j ,  and rx.  
The energy effects of variations in the hydrostatic pressure and of viscous dissipation 
are retained in (16). 

An analysis for conditions of similarity must await the specification of p, -p.  This 
is done in later sections, first for thermal buoyancy alone, then for combined buoyancy 
modes. Similarity will later be achieved for conditions of very broad practical 
importance. 

With similarity, the apparent boundary conditions will be 

1 - $ ( O )  = 1 -X(O) = $(a) = S(c0) = f ' ( 0 )  = f ' ( c 0 )  = 0. (18) 

The other conditions result from considerations at 
surface 

= 0. For a strictly impermeable 

f ( 0 )  = S'(0) = 0. (19) 

However, this would admit no salt diffusion, except with saline stratification in the 
ambient medium. Other surface conditions might be considered, e.g. a melting or 
freezing ice surface or dissolving salt. 

3. A density dependence 
The above formulation carries us as far as we can go without specifying p(t, s ,p ) .  

The importance of the properties of saline water have led, over many years, to many 
investigations of the dependence of density on t ,  s and p .  There are many tabulations 
of data and suggested equations of state. There has been a progressive improvement 
of accuracy and a broadening of the range of conditions covered. 

Chen & Miller0 (1976) have presented a new density equation of state for water 
which is valid for pressures up to 1000 bars and salinities up to 40 p.p.t. This relation 
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agrees with data t o  within the order of 10 p.p.m. However, i t  was not developed 
for accuracy in the region of inversion and contains some 35 temperature terms in 
very complicated combinations. 

Therefore Gebhart & Mollendorf (1977) have developed a much simpler relation 
for p(t, s ,p )  which is of comparable accuracy and yet of sufficient simplicity to yield 
fluid-motion formulations which admit many similarity solutions, with very few new 
parameters. This density equation of state, with a single temperature term, is 

where 
p(t ,s ,p)  = Pnr(S,P){l -.(s,P) [It-t,(s,P)Jl*‘S,p’}, (20) 

P,(%P) = P,(0,1) [1 +.fl(P) + S9l(P) + S2h1(P)1 

t7nhP) = t , (O, 1 )  +f3(P) + s93(13) + s2h3(Zl)l 
= t,(sm,p) [I +C(so,s,,~l)X+C’(s,,s,,P)X(S+E)l, (23) 

= q(s , ,p)  [ 1 +  D(s0, s*,p) 8 + D’(s0, S r n , P )  fw + Ell. (24) 

q(s ,P)  = d o ,  1 )  +f4(P) + sg*(P) + s2h4(P)I 

The ( 0 , l )  quantities above are those for pure water a t  1 bar abs. The fi, gi and hi 
are polynomials in p - 1 ; see the appendix. Some polynomials may be taken as zero 
in simpler, though less accurate, formulations. The above fi are not to  be confused 
with the generalized stream function f defined in (10). 

We see that p(t, s ,p)  is temperature dependent only as It - t,Jq. This form leads to 
extremely important simplifications of the flow analysis. For example, gradients in 
salinity are often much more important than those of pressure in wide ranges of 
applications. Thus, in the last forms of (21)-(24), the coefficients A ,  B, C ,  D, etc., 
are constants, with so constant and without saline stratification, and (20) becomes 
very much simpler for analysis. This greatly reduces the number of additional 
parameters which will arise. 

The ( 0 , l )  quantities and the pressure polynomialsfi, gi and hi were determined by a 
nonlinear regression fit, with the smallest r.m.s. difference, to  perhaps the best collection 
of information. This is the pure-water collection of Fine & Millero (1973) and the 
saline-water density data of Chen & Millero (197G). The range of the regression was 
t = 0-20 “C, s = 0-40 p.p.t. a n d p  = 1-1000 bars. This range of conditions includes the 
vast majority of terrestrial surface water. 

The most accurate form of (20) obtained was with third-order polynomials for f i ,  
gi and hi. The resulting r.m.s. fit was witthin 3-5p.p.m. for pure water and within 
10.4 p.p.m. for the 309 saline-water data points of Chen & Millero (1976) which fell in 
the chosen range of conditions. The resulting values of the parameters are tabulated 
in the appendix. We have also determined a much simpler form of (20) with n = 2, no 
s2 terms and q independent of s; see the appendix. Even with these drastic simplifi- 
cations, the r.m.s. differences are only 6.5 p.p.m. and 38-2 p.p.m. respectively. The 
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FIGURE 2. Variations of the temperature t,(s,p) from (23) at  maximum density, the phase 
equilibrium temperature t i l ( s ,p )  from (25) and of their difference t , (s ,p) -t i l(s ,y) over a range 
of salinities and pressures. ---, tm(s, p )  ; - --, tCl (s ,p)  ; ~ - - - - -, t ,  - ti,. The numbers on the curves 
are in "C. 

effects of salinity and pressure on p,  p m  and t ,  may be seen in figure 1 .  The variation of 
t ,  with salinity and pressure, from our correlation (23), is shown as the solid curves in 
figure 2. The area corresponding to actual density measurements is that for temper- 
atures of about 0 "C and above. 

Note that the parameters of this correlation, like those in other equations of high 
accuracy, are determined to many digits. Retaining seven digits in the correlation 
leaves density unaffected by round-off to 0.1 p.p.m. over the whole range of conditions 
covered. This level is dictated by the expected precision level of the best past density 
information. It is also consistent with the needs for precision in analysis. For example, 
for pure water at 1 bar, the density change from t ,  t o  t,+ 0.1 "C is only 0.1 p.p.m. 
This small difference also demonstrates both the fundamental difficulty in determining 
t, directly and the imprecision in the traditionally quoted values. These matters are 
discussed in detail by Gebhart & Mollendorf (1 977). 

It is interesting to compare the accuracy of the equally simple correlation 

p = p m [ l - 8 x  10-6(t-t,)2] 

for pure water a t  1 atm used in some past analyses with the result from (20). The r.m.s. 
difference at  2 "C intervals between 0 and 20 "C is 9.8 p.p.m. This is very significant, 
since a density difference of 100 p.p.m. from p, corresponds to  a temperature differ- 
ence of about 3 "C on either side oft,. 
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The temperature range of validity of the following analysis, for equilibrium phase 
changes, is bounded below by the equilibrium ice-melting temperature ti,. This was 
recently determined by Fujino, Lewis & Perkin (1974) to be 

ta(8,p) = - 0.02831 - 0.04999 - 0.000112~~- 0 .00759~  (25) 

when corrected through personal communication with Dr E. L. Lewis and converted 
to bars absolute. The data range was 17.7 p.p.t. < s < 35 p.p.t. and 1 atm < p -= 100 
atm. This result is corroborated by the measurements by Doherty & Kester (1974). 
Contours of constant ti, us. salinity and pressure are shown in figure 2 as dashed 
curves. Large depressions in the equilibrium melting temperature are seen at  high 
salinities and pressures. It can be seen in figure 1 that t ,  decreases more rapidly than 
ti, with increasing salinity and pressure. 

Using (25) in conjunction with t,(s, p ) ,  we show the variation oft, - til with salinity 
and pressure in figure 2, also as dashed curves, The equilibrium limits for the occurrence 
of a density extremum are seen to be about p < 300 bars in pure water and about 
s <: 25.5 p.p.t. at  a pressure of 1 bar. However, we recall that, in freezing ice from 
pure water and possibly also from saline water, substantial temperature depressions 
below the equilibrium condition (25) often occur and may persist for long periods. 
There is some indication that our density correlation also applies accurately in this 
subcooling range. In particular, our inferred value of t,(O,p), even at  high pressures, 
agrees well with new direct measurements by Caldwell (1977) in such subcooled pure 
water. However, there is no way to check this density prediction directly, since 
modern density data have been determined at  about 0 "C and above. 

4. Analysis, for thermal buoyancy effects alone 
Consider first vertical flows of small extent, compared with any vertical salinity 

gradient, in an extensive and quiescent ambient medium. For simplicity we shall 
first treat a flow generated by conditions which do not also result in mass diffusion. 
This would occur, for example, with vertical heated or cooled impermeable surfaces 
in either pure or saline water. The results may also be applied, with some small addi- 
tional approximation, to a vertical surface of ice formation or melting in pure water. 
Thus s = s, and p(t, s , p )  = p(t, sm,p)  or p(t, 0 , p )  in pure water. 

A simplification is found, for all flows, for the motion-pressure effect on the density 
difference pm -p.  The approximations which resulted in (7) include the omission of 
the motion pressure p,. Specifically, the largest term in p ,  (ap,,/ay) may be neglected 
for any fluid of ordinary Prandtl number. The motion-pressure difference Ap, across 
the flow region is very much less than gLAp,, where L is the characteristic vertical 
dimension. In a liquid this is also negligible compared with the hydrostatic difference 

The hydrostatic variation itself may also be seen, from the values in the appendix, 
to have a very small effect on the density even for a flow of great vertical extent. For 
example, we see from (21) that the leading pressure effect on the density level, from 
table 6 (see appendix), is about 5 x 10-6L (m) compared with 1-0. Another way of 
estimating this is to compare the leading salinity and pressure terms. Their ratio 
6 x 10-3L/s (p.p.t.) shows that an uncertainty of 1 p.p.t. is equivalent to L = 160m. 

APh = SLPm. 
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Condition 

Heating water, 
to ’ tm 

Melting or freezing 
of ice at 1 bar, or 
cooling of water, 
t o  < t ,  

R 
2 
1 
3 * 
f 
0 

- 1  
- 2  
- 8  

- 1  
0 + 
3 
P 
+ 

- #  

0 

1 
8 

Net buoyancy 
force 

Down 
Down 
Down 
Down 
UP 
UP 
UP 
UP 
UP 

UP 
UP 
Down 
Down 
Down 

Down 
Down 
Down 
Down 

UP 

TABLE 1 .  Some transport conditions, values of R and buoyancy directions. 

Down 

0 1 2 
f,lf, 

FIQURE 3 .  The direction of the buoyancy force W ,  which is determined 
by the values of to, t , ,  t ,  and, therefore, of R. 
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FIGURE 4. Variation of the exponent q ( s , p )  with salinity and pressure from the 
correlation of Gebhart & Mollendorf (1977) for P = 48 and n = 3. 

Therefore we shall neglect pressure effects on density throughout any particular 
flow region. The pressure terms in (20) then pertain only to the pressure level. The 
density difference is then 

P m  - P = ~ ( t m ,  s,, P) -P(L, $my P) = ~ r n ( ~ r n ,  P) a(sm P) [It -tmlg - It, - tm lgI 
= Pmarlt - t,J* - It, - t,l*l, W a )  

where t,, = tm(.sm,p). Both temperature terms are always taken positive, since pm is a 
maximum. If we define 

the density difference becomes 

Pm -P  = pmalto-tml*[1$-Rlq- IRJqI = ~rnalto-tmJ*W. (2Gc) 

The new parameter R indicates the relation between to ,  t ,  and the extremum 
temperature and, as a result, determines the distribution and direction of the buoyancy 
force W across the flow region. For example, fort, = t,,,, i.e. R = 0, the buoyancy force 
is always upward. However, for to = t,,, i.e. R = 1 ,  it is always downward. There may 
also be buoyancy reversals. For example, taking to = 0°C and t ,  = $t,("C) gives 
R = +. The buoyancy force is upward very near the surface and downward otherwise. 
Large values of R result for both to and t ,  well away from tm. Table 1 and figure 3 
indicate some of the many possibilities. Most past analyses of vertical flows have been, 
in effect, for q = 2 and R = 0 in the present formulation. This results in W = $8 in 
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( 2 6 c ) .  In ( 2 0 ) ,  q ranges between about 1.9 and 1.6, depending on the salinity and 
pressure. Contours of constant q were determined, to three significant digits, from the 
roots of ( 2 4 ) .  The results are shown in figure 4 for a range of salinities and pressures. 

Similarity 

A sufficient condition for similarity is that the following quantities in (15), ( 1  6) and 
( 2 6 b )  be independent of x: 

Clearly we should choose p,(s,p) = pl. Here the subscripts r mean differentiation 
with respect to x. 

We see from ( 2 6 c )  that if q5 = q5(q), as is also necessary in (16), then W is independent 
of x only if R is. A sufficient condition for this is R = 0, i.e. t ,  = t, with the ambient 
medium at the extremum density pm (s,,p). This is the case treated by Goren (1966), 
Govindarajulu (1970), Roy (1972) and Youndalgekar (1973), but with s, = 0 and 
Q = 2 .  Otherwise, we must have to - t, = dcc ( t ,  - t , ) cc j .  Setting temperature strati- 
fication aside for the moment, the requirement is that both to and t ,  be independent 
of x. Then R need not be zero. 

From Cl and C, it may be shown that both b and c are either power-law or expo- 
nentially dependent on x. We choose Cl = 3, C, = 1 and C, = - 1 for n = 0. This results 
in 

1 gax3dq 4 c(x) 
b ( z )  = - - 

x( 4 4  =4x’ 
This suggests that the Grashof number be defined as follows: 

Gr; = ga(s , , p )x31 t , - t , l~ / v2 .  ( 2 9 )  

However, we note that this quantity is always positive, even though the buoyancy 
force W may be either positive or negative, depending on the values of to and t ,  
relative to t,. This deficiency may be removed by using instead a form of Gr, dependent 
on Apa as in (14). We take ApG as the integral of the buoyancy difference pm-p 
across the convection layer. This amounts to integrating W (over 7); see (26c) .  The 
integral is defined as 

and the Grashof number becomes 

Gr, = ga(s,, p )  x3 It, - t ,  Iq Iw/v2 .  ( 3 1 )  

When this value of Gr, is used in (28) ’  instead of ( 2 9 ) ,  the buoyancy-force term in (15) 
becomes 

F(9)  = W / L  ( 3 2 )  

Thus I ,  < 0 will often signal a need, in ( 3 1 ) ,  to reinterpret x as positive in the direction 
of g. Then F ( q )  would be, on the average, positive across the flow region. This question 
is that of ‘convective inversion ’ and will be clarified later. Additional considerations 
in the normalization of W by Iw are that we then always deal with a buoyancy-force 
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term of order one over most of the region. On the other hand, we are now faced with 
integro-differential equations since we must also iterate on I,  in the numerical scheme. 

Other similar solutions 

Additional conditions under which similarity solutions exist will be set forth here 
before discussing calculations. Recall that, in addition to R = 0, i.e. t ,  = t,, the 
condition to - t, = d(x)oc t ,  - t, = ( t ,  - t , )  - (t, - t,) = t, - t ,  -j(s) also results in 
It’ = W(y,&) for 4 = $(y). In  addition, from ( 1 6 )  

cd,/bd = C, (33 )  

must be independent of x. This arises from the x dependence of to - t ,  and is satisfied by 

d ( x )  = to - t, = Nsn,  

n’ith this variation, Grs, b and c are unchanged. However, the constants now become 
C, = qn + 3,  C, = qn - 1 and C,  = 1 .  Admitting temperature stratification requires 
that 

C, = 4n. 

cj,/bd = C7 (34 )  

must be independent of x, which implies that j ( x )  = ( t ,  - t , )  = (C, N l4n)  xn and 
C7 = .iniiL/N. If R = 0, i.e. t ,  = t,n, we may not have stratification since 

If R + 0,  then 
t ,  = t,(s,,p) = constant. 

R = (t,a - t,- N, xn)/Nxn 

is independent of .x only for t,,, chosen as t,. Then R = - N,/N. 
The ambient medium will be quiescent only for stable stratification. The condition 

for this in the absence of mass diffusion is j, 2 - g(aT/ap),, where X is the entropy. 
Since ( 2 T / 8 p ) s  is positive and small for most states of liquids, the more conservative 
and convenient condition j, 2 0 is often taken; see Gebhart (1973).  However, in fact 
(8T/8p),s = PT/pc ,  and the exact condition is 

Noting that g, T and c,, are positive, the sign of the limit is determined by that of P, 
which is negat,ive below t,,,. Thus the stable limit allows decreasing t ,  for t, > t, but 
increasing t ,  is required for t, < t,. 

Considering now the viscous dissipation mode of thermal energy production in 
( 1  G ) ,  we find 

This effect is of order 4gaNPrLn(q-1)+1/c, compared with conduction, for example. 
Similarity results only for n = - l / ( q -  1 ) )  which is an unrealistic circumstance. We 
note that this effect, dependent on ga, is very small. Now the pressure term in (16) is 
rewritten as 
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where ,4 is evaluated from (20)  and the last quantity assures the proper sign when /3 
is not zero. Neglecting the second term in the denominator compared with one, we 
have 

C,, = (4Tgc~q/c,) I # - R 1q-2 (# - R) IN 1q-2 x~-%(~-*). (37b) 

This is similar for n = &(Z - q ) ,  quite a large value, if one neglects the variation of T 
across the flow field. This term also depends on ga and is very small. 

Equations (15) and (16), neglecting these last two effects and taking t, = t, if 
stratification is present, are then 

f”’ + (3  + q n ) f f ” -  ( 2  + 2 q n ) f 2  + F = 0, 

q5‘ + a[(3 +qn)f$’ - 4nf‘q5 - ( 4 n N J N )  f’] = 0 

(38a) 

(38b)  

for G‘r, and buoyancy defined as in (31) and (32). If Gr, is defined as in (29) then F in 
(38a) is replaced by W .  We shall use the form (31 ) and F = W/&, exclusively hereafter. 
For an impermeable surface we have 

1 -q5(0) = q5(co) = f ‘ ( O )  = f(0) =f’(OO) = 0. (39) 

This formulation supposes that x increases in the direction of the net flow. Un- 
certainties arise in the range 0 < R < 4. There W ( 7 )  is small and changes sign. The 
net flow direction may, perhaps, be determined by the sign of Using Gr, as defined 
with I,,. in (31), we find the +x direction. Normalizing the buoyancy force with I,. 
enhances its magnitude. 

Other conditions 

Here we develop additional limits on the reasonableness of solutions, as well as the 
basic transport relations. The local surface heat flux q”(x), the energy Q(x) convected 
locally by the flow, the local flow-region thickness S(x)  and the local Nusselt number 
Nu, are 

q”(x) = - k(at/ay),, = [ - $‘(O)] k d b a  ~ 4 [ ~ ( q + ~ ) - l J ,  (40) 

The requirement that  S(0) = 0 results in nq < 1, or n < 0-528 a t  1 bar abs. in pure 
water. With the +x direction taken such that f’ is essentially positive, Q(x) must, 
for N > 0, be a constant, a line source at  x = 0 or increase with x. Thus 

n 2 - 3/(q + 4) = - 0.509. 

The limits are then - 0.509 < n < 0.528. The comparable result for the usual buoyancy- 
force approximation is - 0.6 < n < 1 .  The lower limits in both analyses are the plane 
plume or an adiabatic surface with a horizontal line source a t  the leading edge. The 
condition of a uniform surface heat flux is here n = 1 / ( 4 + q )  = 0.1697. The Nusselt 
number is the same as before, except for the definition of Gr,. Also, the value of #‘(O) 
depends on Pr, R and the buoyancy formulation embodied in (38a) .  
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FIGURE 5. Calculated distribution of the velocity component parallel to the vertical 
surface for selected values of I?, fl = 11.6 and q(s ,p)  = q(0, 1) = 1.894816. 

5. Numerical calculations for pure water 
We first investigated the detailed transport predicted by (38) and (39),  taking a 

Prandtl number of 11.6, that of pure water at  4 "C, and q(s,p) = q ( 0 , l )  = 1.894818. 
We have retained for the calculations the full value of q for accuracy. Rounding q 
to 1-90 produces about a 2 yo error in the units of buoyancy for to = 15 "C and 1, = 4 "C. 
After discussing the results of the calculations we shall estimate the effect on overall 
transport parameters of rounding q. 

Both to and t, were taken independent of x. The applications of such results are to 
the heating and cooling of water at  temperatures around the inversion. However, we 
see from (38) that the flow and transport characteristics are entirely dependent on CT, 

q and R, since F depends only on these parameters. 
In table 1 and figure 3 the value of R is related to temperature conditions and to the 

corresponding direction of the buoyancy force. Although the relation appears com- 
plicated at  first, we see that the buoyancy force changes sign across the flow region 
only in the range 0 < R < 4. This is apparent in comparing cases in table 1 with the 
density distributions in figure 1. This is in accord with past observations with ice 
spheres in water. Dumore et al. (1953) found 'convective inversion' at t, = 4.8"C 
while Schenk & Schenkels (1968) estimated 5.3 "C. These temperatures correspond to 
R = 0-17 and 0.25, respectively. These inversions were thought to be a complete flow 
reversal, which was accompanied by a drastic drop in transport, i.e. in the ice melting 
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FIGURE 6. Calculated t,emperature distribution adjacent to vertical surface for 
selected values of R, u = 11.6 and p(s,p) = p(0,l)  = 1.894816. 

rate. Bendell & Gebhart (1976) found that actual convective inversion occurred 
between 5.5 and 5.6 "C for flow adjacent t o  a vertical ice surface. Taking 

t,(O, 1 )  = 4*03OC, 

the resulting value of R is about 0.27. 
On the other hand, R < 0 invariably gives upflow and R 2 4 invariably gives 

downflow, independent of heating or cooling. We note that R is negative only if t, 
lies between to and t,. We also note that the linear approximation to p, - p  will be 
approached at  both large positive and large negative values of R, i.e. for 

(t,-t,l < ( t n ' - t m l ,  

and equivalently for q = 1 and R = 0. 
We initially investigated this R spectrum, first outside the buoyancy-reversal 

region, for R = 0, f 4, 2, & 3, f 4 ,  f 8, f 10, f 12, ~f: 14 and f 16. For these 
values of R, calculations were performed for q(s ,p )  = q ( O , 1 )  = 1-894816 and Prandtl 
numbers cr = 8.6, 9.6, 10.6, 11.6, 12.6 and 13.6. Then for a single Prandtl number, 
(T = 11.6, the effect of q variation was determined for p(s,p) = q(0,lOO) = 1.859663, 
q(0,500) = 1.727147 and q ( 0 , l O O O )  = 1.582950 for the same values of R. These values 
of q also apply to saline water, e.g. q(0,500)  x q(40,600); see figure 4. 

Accurate calculations in the region of net buoyancy-force reversal, i.e. 0 < R < 4, 

1 ,  



692 B. Gebhart and J .  C .  Mollendorf 

0 I 2 3 4 5 6 
rl 

FIGURE 7. Calculated distribut,ion of the velocity component normal to the vertical 
surface for selected values of R, n = 11.6 and q ( s , p )  = y(0, 1) = 1.894816. 

prored t o  be unattainable. Local buoyancy-force reversal made numerical convergence 
extremely slow. Recall t8hat convective inversion occurs in this range. Serious questions 
regarding the appropriateness of boundary-layer simplifications arise under such 
conditions. On the other hand, extrapolations of our results into this region agree very 
well with those of the heat-transfer measurements of Bendell & Gebhart (1976) which 
fall there. 

Equations (38) were solved numerically subject to boundary conditions (39) for 
n = *Yz = 0 and for the above ranges of F, q and R. A predictor-corrector scheme, with 
automatic local subdivision of 7 to maintain prescribed accuracy, was used to integrate 
from q = 0 to 7 = qedge .  Initially unknown values of Q'(O),  f " ( 0 )  and I,, were guessed 
and subsequently corrected such that the far boundary conditions were satisfied. 
After investigating the effect of vedge, A7 and the accuracy criterion specified for 
automatic local subdivision of the independent variable, it was found that there was 
no change in the fifth decimal place off"(O), r$'(O), I,,. andf(m) for = 20, A7 = 0.05 
and a value of IO-lO for the predictor-corrector accuracy criterion. Under these 
conditions, a t  yedge, 

'ledge 
j" z 10-12 and Q z 10-20 and I,, W/IT, ,  = 1 & 0~000001. 

The resulting calculated transport parameters are listed in table 2 for the values of 
F, q and R given above. The Prandtl number range considered, 8.6 < u < 13.6, and 
the range of pressure and/or salinity effects on q cover a very wide range of actual 
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FIGLTRE 8. Calculated distribution of local buoyancy force for selectoh 
va1iit.s of R, c = 11.6 and q ( s , p )  = q(0, 1 )  = 1.894816. 

condit,ions. The upper section (a)  of table 2 shows the Prandtl number effect on 
transport, and the lower section ( h )  shows t'he effect of the pressure and/or salinity level. 

For cr = 11.6 and q(s ,p )  = g(0, I ) ,  the vertical component of velocit'y adjacent to 
the surface is shown in figure 5 for various values of R. Recall that  the flow is upward 
for R < 0 and downward for R 2 4. The dashed curve represents the conventional 
Boussinesq results. The magnit'ude of the maximum off '(7) is seen t'o increase by 
about 60% from R = 0 to 22 = $. Large calculated differences from conventional 
results are apparent. 

A much smaller effect on the calculated temperature distribution, in our co- 
ordinates, is seen in figure 6. Higher temperature gradients near the surface correspond 
to vertical (downward) velocity components of larger magnitude. The corresponding 
horizontal (inward) velocity component is shown in figure 7 .  *4 40% decrease in the 
entrainment velocity is seen between R = and R = 0. These changes are related to  
those in the vertical velocity component seen in figure 5 .  

The distribution of the normalized local buoyancy force W(7)/17, ,  is shown in figure 
8. For R = 0, the upper bound for a uniformly upward buoyancy force, the buoyancy 
force is larger at the surface than for the other conditions shown. This corresponds 
to a higher calculated average fluid temperature distribution and associated lower 
velocity levels. For R = +, t'he lower bound for a uniformly downward buoyancy 
force is zero a t  the surface and has an extremum at 7 z 0.3. Recall that  I,. is always 
negative for R B $ (downflow) and positive for R < 0 (upfiow), and that 
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- 16 -? 0 8 16 
R 

FIGURE 9. Heat-transfer dependence on R.  The six curves were calculated for d = 8.6, 9.6, 10.6, 
11.6, 12.6 and 13.6, increasing in the direction shown. Results are for q(s ,p)  = q(0, 1) = 1.894816. 

From (43), the average Nusselt number Nu,  = EL/k for a surface of vertical 
extent L is given by 

where Gr; is defined by (29). Values of [ - 4'(0)] [ II,l]t have been computed from the 
results shown in table 2 for the same values of CT, q and R and are shown in table 3. 
The effect of the Prandtl number on this heat-transfer parameter is also shown in 
figure 9. As the Prandtl number decreases from 13.6 to 8.6, there is a decrease in heat 
transfer at  all R. The total decrease is uniformly about 14 yo. For each Prandtl number, 
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-16 -8 0 8 16-16 -8 0 8 16 
R R 

FIGURE 10. (a )  Dragf"(O), ( b )  heat transfer -Q'(O),  ( c )  net buoyancy I ,  and ( d )  niass flow rate 
f ( w )  over the range of R for v = 11.6 and q(s ,p)  = q(0 , l )  = 1.894816. Horizontal dashed lines 
are Boussinesq asymptotes. 

a striking decrease in heat transfer is seen as R approaches the region of buoyancy- 
force reversal. These large effects are not limited to  low temperature levels. For 
example, R = 0.6 in pure water a t  atmospheric pressure for to = 20 "C and t, = 10 "C. 
This may also be looked upon as a consequence of the strong variation of with 
temperature, by about a factor of 6.5 from 6 to 20 "C. 

As will be seen later, the variation of I, with R is smooth and nearly linear, with 
I ,  < 0 for - 16 < R < 0 and I, > 0 for Q > R >, 16. These trends confirm the surmise 
that I, = 0 occurs in the region 0 < R < 8 and suggest that  we might initially infer 
it,s behaviour in this range from the calculated smooth behaviour outside. 

From such plots of I, as a function of R, which amplify the region near I, = 0, 
convective reversal was inferred to  occur a t  R = 0.310 & 0.001. This value applies 
over the whole range of Prandtl numbers considered, 8.6 < CT < 13.6. For a vertical 
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cr f"(0) - Q'W) I ,  f (m) 
8.6 0.81002 1.38014 0.43301 0.32028 
9.6 0.81838 1.44036 0.41447 0.31412 

10.6 0.82565 1.49646 0.39858 0.30871 
11.6 0.83204 1.54908 0.38475 0.30390 
12.6 0.83773 1.59870 0.37256 0.2 995 8 
13.6 0.84283 1.64572 0.36171 0.29566 

TABLE 4. Heat-transfer and flow parameters f"(O), - $ ' (O) ,  I ,  and f (m)  as calculated using the 
Boussinesq approximation for u = 8.6, 9.6, 10.6, 11.6, 12.6 and 13.6. 

FIGURE 1 1 .  Calculated heat-transfer variation with R near the region of net buoyancy-force 
reversal compared with the measurements by Bendell & Gebhart (1976). Calculated results in 
figure 9 are here compared with those obtained using the Boussinesq approximation with p 
evaluated at various temperatures. For symbols see table 5. 

surface at 0 "C in pure water we predict convective inversion to occur at  an ambient 
temperature t ,  = 5.8 "C when t ,  is taken as 4.029 "C. Measurements by Rendell & 
Gebhart (1976) report upflow for t, = 5.5 "C and downflow for t, = 5.6 "C. 

Our calculations also showed that, as the condition of net buoyancy-force reversal 
was approached, the non-dimensional surface shear, heat flux and mass flow rate 
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parameters f ” ( O ) ,  - Q(0) and f(co), respectively, diverged to large positive values on 
one side of 0 < R < + and large negative values on the other side. This characteristic 
required increased care in tlhe numerical calculations as the region 0 < R < 9 was 
approached. The variation off”(O), -Q’(O),  Iu, and f (m)  with R is shown in figure 10 
for cr = 1 l . G  and p(s,p) = q(0 , l ) .  The asymptotes associated with conventional 
analysis, for each off”(0). Q’(O) ,  I,,, andf(co), are shown as dashed lines. Except for I,, 
the curves are strikingly similar, in that they diverge rapidly near R = 0 and R = 8. 
A t  large 1R[ they closely approach the asymptotes for R = 0 and p = 1, which are 
given in table 4. Note that I,. decreases almost linearly as R increases. 

Figure 1 I shows the heat-transfer variation expanded for the region of R in which 
convective inversion occurs. The solid curves again represent present results, for 
8.6 < u < 13.6, all for q = q ( 0 , l ) .  Also shown are the data of Bendell Sr; Gebhart (1976), 
corrected for an error in data reduction, which cover a Prandtl number range of 
from 8.6 to 13.5. The particular Grashof number Gr, used in their paper has been 
converted to Gri ,  as shown in table 5. The heat-transfer data in the region of our cal- 
culations agree to within an average difference of - 6.5 yo with present results. Inside 
0 < R < g, the data seen to lie on reasonable extrapolations of our computed results. 
The Prandtl number trend in the data also agrees with the calculated Prandtl 
number effect. The maximum deviation between measured and calculated results is 
about 15%. The r.m.s. is only 8.6%. 

The theory compared with data in figure 1 1 do not include an allowance for inter- 
face motion, or equivalently, interface blowing, in the boundary condition f(0) in 
(39). This is to be expected. One may show from continuity considerations and from 
(40) that the proper value off(0) is less than c,(t, - t,)/crhi,, where hi, is the latent heat 
of fusion. For water, this parameter has a value of less than Since consequent 
changes in q5’(0) would be of comparable order, the above comparison of present 
results with these data is appropriate. 

It is of interest to compare our results with those which result from using the 
conventional approximation for the density difference. These are equivalent to the 
present formulation for (RI --+a and also for R = 0 and q = 1 .  Recall that a single 
value of /3 cannot correctly reflect the consequences of a density extremum. The 
conventional formulation for heat transfer is 

We consider the possibility of modifying this to represent more correctly the behaviour 
near the density extremum, using some reference temperature to evaluate 1. Prom 

(46) 
(20)) p is calculated as 

where the subscript r refers to conditions at a suitably chosen reference temperature t,. 
Since the physical heat transfer is independent of the formulation, we equate the 
two forms (44) and (45) for Nu, and obtain 

P7 = .dPm/P , )  Itr-tncI*--l, 

where the subscript B indicates the conventional value calculated using the Grashof 
number contained in (45). It remains to determine a reasonable reference temperature 
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FIGURE 12. Variation of density and calculated net buoyancy force with temperature and R 
for a surface at 0 "C in pure water at  t ,  and q(s,p) = q(0 , l )  = 1.894816, for c7 = 11.6. 

for ,8. Choosing t, successively at  three different levels t,, to and tf = &(to+t , ) ,  (47) 
becomes 

r - d'(0)l [ILIla = rq(P,/P,) IW11) r - $'(O)Iw 

[ - d'(0)l [[lujlla = [q(Pw/PO) I - Blq-114 [ - d'(0)lB, 
[-$'(())I [Irwll' = [ q ( f m / P f )  l~-Blg-ll' c - $ ' ( O ) l B *  

(484 

(4f3b) 

(48c) 

These three results are shown as the dashed lines on figure 11,  for q = q(0 , l ) .  Note that 
each of these distributions is similar to the trend of the present formulation (solid 
lines). However they are displaced. 

The two methods may be brought into closer agreement in the region of net 
buoyancy-force reversal if we choose the reference temperature as 

t, = to - 0*69(to - t,,,). (49) 
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- 16 - 8  0 8 16 
R 

FIGURE 1 Calculated effect of pressure and/or salinity level on heat transfer --mr a range of 
R, r~ = 11.6 and q(0, l ) ,  q(0, loo), q(0,500), q ( 0 , l O O O ) .  These numerical values of q ( 0 , p )  are given 
in table 2. 

Then (47) becomes 

c - +'mi rl~wli~ = rq(P,/p,.) IR - 0.31 I+ r - N". (50) 

This result is also plotted on figure 11, for (T = 11-6 and q = q ( 0 , l ) .  Therefore the 
conventional results will agree with present ones when an accurate expression for 
p, viz. (46), is used with a proper choice oft,. If t, is chosen for best agreement with the 
data of Bendell & Gebhart (1976), then the value of 0-69 in (49) should be 0.72. 

We shall now consider the physical interpretation of buoyancy-force reversal and 
convective inversion. Consider a vertical surface at to = 0°C.  Figure 12 shows the 
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density variation with temperature out through the thermal region. Also shown is the 
variation of the net buoyancy force I,, determined by interpolation, as it decreases 
with increasing choices oft, above 0 "C. The corresponding values of R are also shown 
on the abscissa. We see that I;, = 0 corresponds to about t, = 5.8 "C a t  R = 0.31 for 
u = 11.6 and q = q ( 0 , l ) .  For t, > 5.8 "C the flow is predicted to be downward while 
for t ,  < 5.8 "C the flow is predicted to be upward, if it is not bi-directional. 

Finally, the calculated effect of q, i.e. of the pressure and/or salinity level, on heat 
transfer is shown in figure 13. Results are plotted for u = 11.6 over a wide range of R. 
The values of q cover its variation over the range 1 < p < 1000 bar abs. and 

0 < s c 40p.p.t. 

Decreasing q(s,p) is seen to decrease heat transfer by about 23% a t  large JR1. As the 
condition of net buoyancy-force reversal is approached, there remains a sharp decrease 
in heat transfer for all q. 

Throughout the foregoing calculations we have used the precise numerical values 
of q which relate to the easily identifiable conditions q(0, l), q(0, loo), q(0,500) and 
q(0,lOOO). The summarized results in table 2 are then very accurate for these specific 
conditions, for any subsequent uses which may arise. Here we use these results to 
estimate the effects of rounding q down from the values obtained from the correlation 
(20) in table 6. The effect of q is largest at  large IRI. Certainly I, is the most sensitive 
of the transport parameters. The results in table 2,  for R = & 16, indicate that I, 
decreases by about 30 parts per one part decrease in q(s,p). As a result, a change in 
I, of O.lyo accompanies a change in the value of q of about 0.0003. Thus, for 
example, q(O,500) = 1.727147 may be rounded to 1.7271 without affecting accuracy 
to 0.1 yo in Iw. 

6. Combined thermal and saline diffusion: conditions for similarity 
The parameter R includes the effect of density inversion. It also eliminates the need 

for any approximation for the buoyancy force, which becomes simply as given in 
(26c). This is exact, inasmuch as is the equation of state for density. The other role of 
R is t o  locate the density maximum in the $ distribution, as dictated by the relation 
of to and t, to t,. 

Admitting simultaneously the t ,  s and p effects on density, equation (20), makes 
the formulation of buoyancy more complicated. However, we have seen in a previous 
section that the pressure effect is often small. Then only the pressure level that pertains 
in a given flow or configuration enters the formulation. We further elect to use here the 
simpler state equation, for n = 2, which contains no s2 terms. Also, since there is no 
s term in q, q(s,p) becomes q(p). 

The valuesp and s, determine the constant values ofp,(s,,p), ct(s,,p) and tm(s,, p) 
which apply for any paxticular application of the present results. As a result, the 
only variables in the buoyancy force are t and s, as given in (20). This is particularly 
convenient in analysis since there is only one t term and pm, a and t, are each only 
linearly dependent on s. As a result there will be few circumstance-dependent para- 
meters in the buoyancy force, apart from R. The s2 terms in (21)-(24) may be retained 
for higher accuracy, with additional complexity. 
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However, the detailed mechanics of flows which have salinity gradients are very 
much more complicated. The joint effects of the local values oft  and s determine the 
distribution of p across the convection region, through ( 2 0 ) .  The t and s distributions, 
on the other hand, are governed by the full set (15)-(17), along with the relevant 
boundary conditions. 

As an example, consider a vertical surface freezing water from a saline ambient 
medium at, say, t ,  = 2t,. The local temperature decreases into the thermal layer. 
This will cause a local density maximum and then decreasing density before the much 
thinner saline diffusion region is reached. Recall that the Lewis number at/D, where 
at is the thermal diffusivity, is about 100. Since dissolved salt is largely excluded in 
freezing, the salinity level will be higher nearer to the interface, in the thin region of 
salinity diffusion. For appreciable values of the difference so - s,, the density again 
begins to increase. The result is a local minimum. Thus multiple extrema may occur 
in quite ordinary circumstances. 

The buoyancy density difference is calculated from p ( t ,  s , ~ )  in (20). There are no 
terms in the salinity squared: 

where 

Q' QAto/Aso g,(P)t,(O, 11, ( 5 2 4  

P' P\Atolq/Aso g1(P)p,(O, l)/a(sm,P)Pm(Sm,p) = A'/a(sm,P), (52e )  

where T, denotes the extremum temperature under the conditions in the local ambient 
medium. The additional parameters which have arisen in W ,  owing to saline diffusion, 
are A ,  B,  Q and P = A/adQ. The magnitudes of A and B are usually small compared 
with 1. They are primarily the effects of the local ambient-medium salinity level on 
the level of pm and a. On the other hand, P S  is the principal component of the con- 
tribution of the salinity gradient to the buoyancy force. We see from ( 5 2 b )  that this 
is a very large term for so - s, large. This gives a large effect of p ,  - p  compared with 
the temperature effect. However, the salinity diffusion layer is very thin. The other 
salinity contribution, Q ,  is the effect of the salinity gradient on t , .  Although the term 
QS may be larger than $, for so-s, large, the range of its effect, in 7, is also small. 

There are several separate physical effects in this formulation. We have already 
discussed, for thermally driven flows, the effect on transport of the ambient-medium 
salinity and pressure level. The new effects are seen in the eventual equations below 
and are those of salinity level and diffusion in F in ( 5 3 a ) ,  in conjunction with (53c ) .  
The effects of these levels are contained in A and B. Their signs are determined by that 
of so - s,. The sign of the strong buoyancy effect - PS also follows that of so - s,. 
This has to do with the temperature and salinity buoyancy effects tending to oppose 
or aid each other. This tendency, however, is mediated by the relative magnitude of 
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q5 compared with - (R + QS) and by their difference compared with R. Here QS is 
the shift in the local density extremum temperature across the thin region of saline 
diffusion. 

Similarity solutions may again be found, with simultaneous saline diffusion, for a 
broad range of important practical applications in low temperature water. The 
equations are again (15) and ( 1  6) with (51 ) as the buoyancy force and (1 7) added for 
salinity diffusion. The conditions on b and c are (28)  as before and Gr, may be defined as 
in (29) .  However, we may still normalize W by I,, [see (30)]  as was done in (32)  and 
use (51) to  obtain F ( 7 ) .  Then Gr, is given by (31) instead. 

Here we consider a simple case wit,h neither temperature nor salinity stratification, 
i.e. t ,  and s, uniform. The surface conditions to and so will also be taken uniform. 
Neglecting the pressure and viscous dissipation energy effects, the equations in f, $ 
and S become 

f"'+3jj'"-2ff2+F = 0, (53a) 

$3'' f 3Crf$', S" + 3SCfS' = 0,  ( 5 3 h  c )  

where S = (s - sm)/(so - s,) and again F is IY in (51 ) divided by Iu,. The set of boundary 
conditions for an impermeable surface and no slip is 

f l ( 0 )  =f(O) = 1-$(0) = 1 -S(0)  =f'(Oo) = $(m) = S(c0) = 0. ( 5 3 4  

Again this combined buoyancy-mode formulation has similar solutions, as did the 
simpler thermal buoyancy formulation above, for conditions where W is independent 
of x. This question is assessed in (51) and (52). We note that A ,  B, Q ,  P, q and R are 
all independent of x if to, t,, so and s, are uniform and any effect of pressure variation 
on the density level is neglected. Thus the only difference with saline diffusion is that 
TV is now defined as in (51) and (52). 

This permits the similarity analysis of many important transport mechanisms. 
There are, in addition, other solutions for special circumstances and approximations 
concerning the effects of salinity and melting and freezing. 

7. Conclusions 
This analysis of thermal, momentum and saline transport is more general than those 

in the past. The effect of high levels of salinity and pressure are simply included in a 
single formulation. Very few circumstance-dependent parameters arise in this treat- 
ment, which permits complete flexibility of the temperature conditions up t o  20 "C. 
This results from a very accurate new equation of state whose single temperature term 
confers simplicity. There is no additional approximation in the calculation of the 
buoyancy force to  the level of accuracy of the most recent wide-range fundamental 
density data. This accuracy of representation applies across the regions containing 
ext'renia as well as for the temperature, salinity and pressure conditions in the vast 
majority of terrestrial surface wat'er. 

We have treated vertical flows generated adjacent, to  surfaces. Extensive calcu- 
lations were made for thermally buoyant flows. The results indicate that very large 
errors in transport prediction arise from the conventional approximation of linearizing 
the temperature dependence of density in the buoyancy force. 

The calculations also show that the substantial variation of the Prandtl number 
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j 0 1 2 3 

- 
- 

i l l  

f e i  

f31 

f 4 l  

- 
- 

q1i 7.9922523 - 04 
q 2 5  1.6233553 - 02 
93, - 5.265509E - 02 
94i - 3.1365303 - 03 
hhl 1.9183343 - 07 
hzj - 4665866E - 04 
'hi 0.0 0 0 0 0 0 
h4l 7'5993783 - 05 

4.9609983 - 05 
1.3775843 - 04 

- 5.4300003 - 03 
- 1.1187583--04 
- 5.1948963-08 

1'129961E-05 
7.4967813-05 
2.9839373- 06 
1.3471903 -09 

-4.3529123-07 
- 3'683650E - 06 
-8.7189153-08 

- 2.8019733 - 09 
1.4976483 - 06 
7'7201813 -07 

- 1'2383933 - 07 
1'031185E- 10 

- 8.0532483 - 08 
- 2.7920533 - 07 

4'4535573 - 09 
- 2.2031333 - 12 

1.9786753 - 09 
7.6940773 -09 

- 4'1665703 - 1 1  

7'8426193- 13 
2'9032403 - 10 

- 7.0388463 - 10 
5'8572533- 11  

- 2.9796533 - 14 
6'9664523 - 12 
1.411138E- 10 

-2'93760lE- 12 
1.1 1244OE - 15 

- 9.0793793 - 13 
-4,5611133- 12 

5.870105E - 14 

TABLE 6. The parameters in (20) for n = 3. cc(0,l) = 9.297173E-06 ("C)9, 

t,(O, 1 )  = 4~0293253+00"C, q(0, 1) = 1.8948163+00 "C. 

over the relevant temperature range, principally through viscosity variation. causes 
appreciable additional effects on transport. The salinity and pressure levels in the 
flow field also have considerable effects. These are included simply in the three 
salinity- and pressure-dependent parameters which arise. Two of these parameters 
occur in a new form of the local Grashof number. This form is a very much more 
accurate measure of local flow vigour and direction than the conventianal one. 

Density extrema have large effects on transport. Under some conditions buoyancy- 
force reversals arise. This leads eventually to  zero net buoyancy and then to  convective 
inversion. One of the most significant results is the ability of this formulation to 
localize the condition for convective inversion. All our predictions are in close accord 
with experiments. 

The last section shows that similarity solutions also result for flows arising from 
the combined buoyancy effects of simultaneous thermal and saline diffusion over a 
wide range of salinities and pressures. Several additional salinity- and pressure- 
dependent parameters arise. Their relative importance is discussed in terms of their 
magnitudes and domains of importance in determining transport. The occurrence of 
multiple density extrema in some flow configurations is apparent. 
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SUNYIBuffalo Institutional Funds. Both authors would also like to  thank Bonnie 
Boskat for her expert efforts in the preparation of the manuscript. 

Appendix. The density correlation 
We append here, for convenient access and in sufficient detail for use, both the 

most accurate and the simplest of the correlations found by Gebhart & Mollendorf 
(1977). The ( 0 , i )  values and the coefficients in the following pressure polynomials 

24 FLW a9 
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j 0 1 

- 4.955317E -05 
- 5.181 147E - 04 
- - 5.430000E - 03 

f 45 - - 1.8988393 - 04 
911 8.046157E-04 - 1.051410E-09 
gar - 2.8390923 - 0 3  - 70125734E- 06 
931 - 5.2655093 - 02 - 6.824758E - 05 

f i r  
fir 
f 3 1  

2 

- 1'950180E - 09 
1.190039E -06 
2.4551773 - 07 
2616628E - 08 
3'304577E - 11 

- 2.4305843 - 09  
2.106695E - 09  

TABLE 7.  A simpler correlation, for n = 2. 

have been rounded to an extent which does not affect p(t,  s, p )  by more than 0.1 p.p.m. 
over the whole range of conditions: 

Values ofthe coefficients are given in table 6 for the most accurate correlation at 
n = 3, retaining all pressure functions, and in table 7 for n = 2 with no s2 terms and 
no s term in the exponent q. 
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